

INERCIA

Inercia en acero carbono

Combinado con acumulación ACS

Combinado con producción ACS

Los depósitos de inercia fabricados por SUICALSA cubren una amplia gama de aplicaciones en las instalaciones de calefacción y refrigeración, permitiendo aumentar la inercia térmica de las mismas así como combinar estas aplicaciones con producción y almacenamiento de agua caliente sanitaria. Adicionalmente, el suministro de depósitos de inercia con serpentines fijos adicionales permite combinar varias fuentes de producción de calor.

La gama de depósitos de inercia de SUICALSA se clasifican en los siguientes productos:

Inercia en acero carbono

Depósitos de inercia construidos en acero carbono ST-37.2 para almacenamiento de agua caliente y de agua fría, con presiones máximas de funcionamiento de 3 bar a 6 bar.

Modelo PF --> Presión de trabajo 3 bar

PF1 - Sólo depósito de inercia

PF2 / PF2E- Depósito con 1 serpentín calentamiento

Modelo DI --> Presión de trabajo 6 bar

Modelo DIM --> Mural - Presión trabajo 4 bar

Inercia en acero inoxidable

Depósitos de inercia construidos en acero inoxidable AISI 444 para aplicaciones en las que el agua del circuito primario resulta muy agresiva para su empleo con acero carbono.

Inercia en acero galvanizado

Depósitos de inercia construidos en acero carbono galvanizado en baño de zinc, para almacenamiento de agua fría en instalaciones de refrigeración.

Inercia combinados con producción-acumulación de ACS

Depósitos de inercia construidos en acero carbono ST-37.2 con acumulación para ACS en depósito interior vitrificado, o con producción instantánea de ACS en serpentín corrugado de acero inoxidable.

Modelo COMBI - Combinado con acumulación de ACS

CB1 - Sólo acumulación

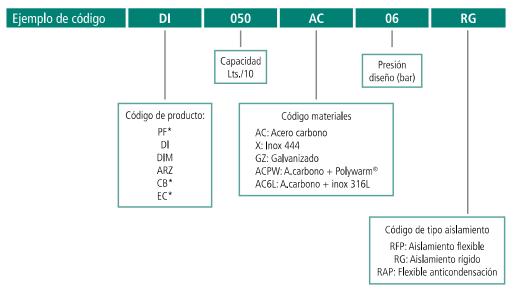
CB2 - Acumulación con 1 serpentín de calentamiento

CB3 - Acumulación con 2 serpentines de calentamiento

Modelo ECO-COMBI - Combinado con producción instantánea de ACS

EC1 - Sólo serpentín de producción

EC2 - Serpentín de producción con 1 serpentín de calentamiento


EC3 - Serpentín de producción con 2 serpentlnes de calentamiento

APLICACIÓN

Acumulación de agua caliente / fría para de circuitos primarios de instalaciones de calefacción y refrigeración, con objeto de aumentar la inercia térmica de las instalaciones. Uso combinado con producción y acumulación de agua caliente sanitaria.

CÓDIGOS

Los depósitos de inercia se definen por un código que consta de una sucesión de dígitos, cuyo significado es el siguiente:

PF1 - PF2 / DEPÓSITO DE INERCIA 3 BAR

INFORMACIÓN TÉCNICA

Los depósitos de inercia permiten mejorar la flexibilidad de respuesta en las instalaciones térmicas acumulando energía de reserva para evitar arranques innecesarios de caldera o estufa. Los serpentines de intercambio térmico permite combinar diferentes tipos de sistemas de calentamiento.

Los depósitos de inercia están fabricados en acero carbono. En el caso del modelo PF2 se dispone de 1 serpentín fijo adicional construido también en acero carbono como apoyo a la fuente de calor principal, o bien como calentamiento de fluido secundario de otro circuito anexo.

Opcionalmente, el depósito de inercia también se puede construir con 2 serpentines fijos de apoyo, añadiendo un serpentín en la zona superior del modelo PF2.

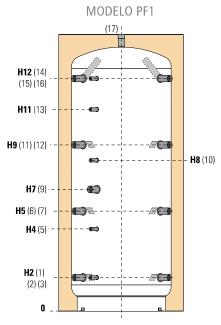
APLICACIÓN

Almacenamiento de agua caliente de circuito primario. En el caso de depósitos con serpentín se consigue la combinación de varios sistemas de calentamiento en un único depósito.

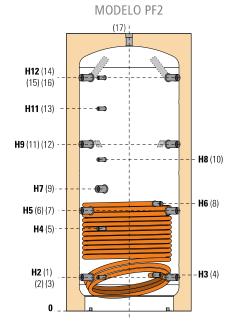
AISLAMIENTO

Se suministra el siguiente aislamiento estándar en función de la capacidad:

200 a 600 lts: Aislamiento de alta eficiencia fabricado con espuma rígida de poliuretano.


800 a 5000 lts: Aislamiento de fibra de poliéster flexible, con resistencia al fuego B-s2d0 en conformidad con la norma EN 13501.

Terminación exterior con funda skay de color gris y tapa superior de PVC.


Los acumuladores cumplen los criterios de diseño ecológico según Reglamento 814/2013 y de etiquetado energético según Reglamento 812/2013.

Modelos PF* con etiquetado energético

Código	Vol.neto (Its)	Pérdida ca l or (W)	Clase energética
PF1020AC03RG	180	58	В
PF*030AC03RG	279	61	С
PF*050AC03RG	478	109	C

1/3/6/7 Salida al generador de calor
2/10 Instrumentación
4 Salida del serpentín inferior
8 Entrada al serpentín inferior

9 Conexión para resistencia eléctrica 11/12/14/16 Entrada desde generador de calor 13/15 Instrumentación 17 Salida a circuito de calefacción (17) (11) (14) (2) (5) (9) (10) (13) (15) (4) (8) (10) (13) (15)

Consultar versiones con 2 serpentines

H Altura total

Df: Diámetro acumulador sin aislamiento

De: Diámetro acumulador con aislamiento

DIMENSIONES

Volumen						Dime	ensiones	(mm)					
(litros)	Df	De	Н	H2	Н3	H4	H5	H6	H7	H8	Н9	H11	H12
200	450	550	1299	218		430	500	_	576	711	782	871	1064
300	550	650	1340	232	217	444	514	514	590	725	796	885	1078
500	650	750	1620	247	260	533	629	745	841	930	1011	1231	1343
600	650	750	1870	247	260	582	695	855	915	1060	1144	1382	1593
800	790	1010	1840	265	278	584	690	762	823	988	1115	1332	1541
1000	790	1010	2130	265	284	656	787	953	998	1188	1309	1588	1831
1500	950	1210	2250	313	336	736	845	1006	1061	1286	1377	1653	1909
2000	1100	1360	2320	347	370	770	879	1001	1060	1300	1411	1687	1943
3000	1250	1450	2814	556	569	1017	1071	1551	1693	1879	1786	2140	2402
5000	1600	1800	2929	586	_	1047	1101	_	1691	1889	1816	2159	2432

DATOS TÉCNICOS Y DE FUNCIONAMIENTO

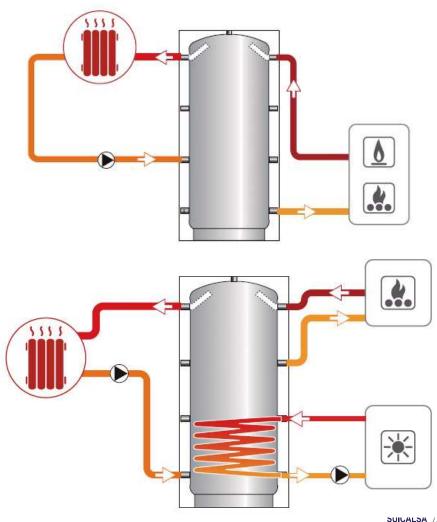
CONEXIONES

Volumen	Superficie	Peso	(kg)
(litros)	intercambiador (m²)	PF1	PF2
200	_	42	_
300	1	59	76
500	1,9	84	109
600	2,1	97	122
800	2,5	114	147
1000	3,1	148	191
1500	3,8	207	257
2000	4,6	254	304
3000	6,2	341	399
5000	_	662	_

Volumen	Conexiones gas HEMBRA						
(litros)	1-3-6-7	4-8	9	2-5-10-13-15	11-12-14-16	17	
200	1"1/2	_	1"1/2	1/2"	1"1/2	1"1/2	
300	1"1/2	1"	1"1/2	1/2"	1"1/2	1"1/2	
500	1"1/2	1"	1"1/2	1/2"	1"1/2	1"1/2	
600	1"1/2	1"	1"1/2	1/2"	1"1/2	1"1/2	
800	1"1/2	1"	1"1/2	1/2"	1"1/2	1"1/2	
1000	1"1/2	1"	1"1/2	1/2"	1"1/2	1"1/2	
1500	1"1/2	1"	1"1/2	1/2"	1"1/2	1"1/2	
2000	1"1/2	1"	1"1/2	1/2"	1"1/2	1"1/2	
3000	2"	1"1/4	2"	1/2"	2"	2"	
5000	2"	_	2"	1/2"	2"	2"	

CONDICIONES DE DISEÑO

	Presión diseño	Temperatura diseño
Depósito	3 bar	95 C°
Serpentín	10 bar	95 C°


CÓDIGOS DE PRODUCTOS

MODELO PF1 - SIN SERPENTÍN

Código	Vol. (Its)
PF1020AC03RG	200
PF1030AC03RG	300
PF1050AC03RG	500
PF1060AC03RG	600
PF1080AC03RFP	800
PF1100AC03RFP	1000
PF1150AC03RFP	1500
PF1200AC03RFP	2000
PF1300AC03RFP	3000
PF1500AC03RFP	5000

MODELO PF2 - CON 1 SERPENTÍN

Código	Vol. (Its)
PF2030AC03RG	300
PF2050AC03RG	500
PF2060AC03RG	600
PF2080AC03RFP	800
PF2100AC03RFP	1000
PF2150AC03RFP	1500
PF2200AC03RFP	2000
PF2300AC03RFP	3000

PF2E / DEPÓSITO DE INERCIA 3 BAR CON SERPENTÍN FIJO Y ESTRATIFICACIÓN

INFORMACIÓN TÉCNICA

Los depósitos de inercia estratificados están fabricados en acero carbono pintados exteriormente y disponen de un serpentín fijo de acero carbono con sistema de estratificación CTS®.

Estos depósitos se han diseñado para mejorar la flexibilidad de sistemas con fuentes de calor discontinuas y de baja temperatura, mediante el sistema de estratificación CTS®.

La estratificación CTS® se basa en la combinación de 2 sistemas:

- 1) Distribuidor de laberinto patentado para el agua de retorno de calentamiento.
- 2) Nuevo dispositivo de estratificación que lleva a la parte superior del depósito el agua calentada por el serpentín fijo inferior.

Esta combinación asegura una estratificación natural dentro del depósito sin válvulas o dispositivos externos.

APLICACIÓN

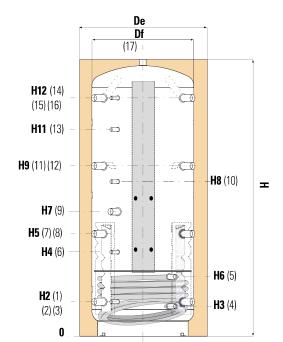
Almacenamiento eficiente de agua calentada procedente de fuentes de calor de baja temperatura como calderas de biomasa, bomba de calor o colectores solares.

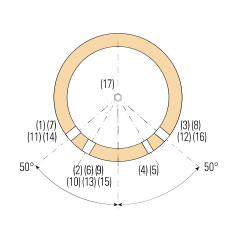
AISLAMIENTO

Los interacumuladores se suministran con aislamiento estándar de poliuretano expandido rígido de alta densidad, coeficiente de conductividad térmica de 0,022 W/m°K, exento de gases perjudiciales para la capa de ozono. La terminación exterior se realiza en funda de PVC de color gris

Los acumuladores cumplen los criterios de diseño ecológico según Reglamento 814/2013 y de etiquetado energético según Reglamento 812/2013.

CONDICIONES DE DISEÑO


	Presión diseño	Temperatura diseño
Depósito	3 bar	95 C°
Serpentín	10 bar	95 C°

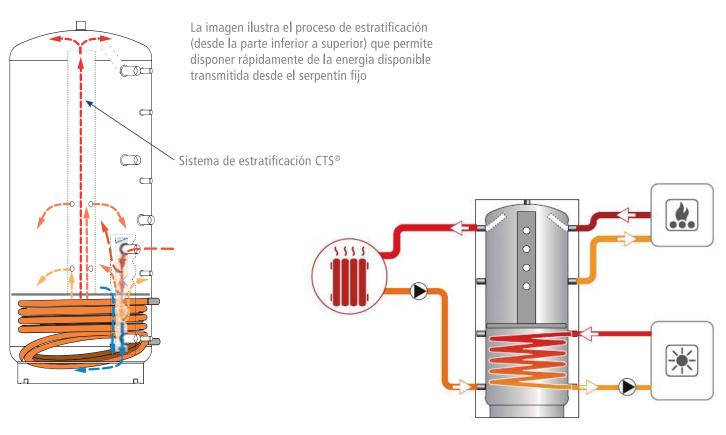


Modelos PF2E con etiquetado energético

Código	Vol.neto	Pérdida ca l or	C l ase
	(Its)	(W)	energética
PF2E050AC03RG	478	109	C

1/3/7/8 Salida al generador de calor 2 Instrumentación 4 Salida del serpentín inferior 5 Entrada al serpentín inferior 6 Instrumentación 9 Conexión para resistencia eléctrica 11/12/14/16 Salida a circuito calefacción / Retorno 10/13/15 Instrumentación Salida a circuito de calefacción 17 Altura total Н Df: Diámetro acumulador sin aislamiento Diámetro acumulador con aislamiento De:

DIMENSIONES


Volumen						Dimensic	nes (mm)					
(litros)	De	Df	Н	H2	Н3	H4	Н5	H7	Н8	H9	H11	H12
500	750	650	1620	247	215	533	629	841	930	1011	1231	1343
600	750	650	1870	247	215	582	695	915	1060	1144	1382	1593
800	950	790	1840	265	233	584	690	823	988	1115	1332	1541
1000	950	790	2130	265	233	656	787	998	1188	1309	1588	1831
1500	1100	950	2250	313	281	736	845	1061	1286	1377	1653	1909
2000	1300	1100	2320	347	315	770	879	1060	1300	1411	1687	1943

Volumen	Conexiones rosca gas HEMBRA							
(litros)	1 - 3 - 7 - 8	2 - 6	4 - 5	9	11 - 12 - 14 - 16	10 - 13 - 15	17	
500	1"1/2	1/2"	1"	1"1/2	1"1/2	1/2"	1"1/2	
600	1"1/2	1/2"	1"	1"1/2	1"1/2	1/2"	1"1/2	
800	1"1/2	1/2"	1"	1"1/2	1"1/2	1/2"	1"1/2	
1000	1"1/2	1/2"	1"	1"1/2	1"1/2	1/2"	1"1/2	
1500	1"1/2	1/2"	1"	1"1/2	1"1/2	1/2"	1"1/2	
2000	1"1/2	1/2"	1"	1 " 1/2	1"1/2	1/2"	1"1/2	

DATOS TÉCNICOS

Vo l umen (litros)	Superficie de intercambio (m²)	Peso (kg)
500	1,9	94
600	2,1	107
800	2,5	115
1000	3,1	150
1500	3,8	218
2000	4,6	265

Código	Vol. (lts)
PF2E050AC03RG	500
PF2E060AC03RG	600
PF2E080AC03RG	800
PF2E100AC03RG	1.000
PF2E150AC03RG	1.500
PF2E200AC03RG	2.000

Muchas instalaciones de refrigeración o calefacción precisan de depósitos para aumentar la inercia térmica del sistema, a fin de evitar un número elevado de encendidos del grupo frigorífico o caldera, cuando se producen rápidas variaciones de temperatura.

Los depósitos de inercia están construidos en acero al carbono ST-37-2, y pintados exteriormente con imprimación antioxidante de color negro.

APLICACIÓN

Acumulación de agua fría / caliente en sistemas de refrigeración / calefacción.

AISLAMIENTO

Se suministra el siguiente aislamiento estándar en función de la capacidad:

150 a 1000 lts Poliuretano expandido rígido de conductividad térmica de 0,023 W/m°K. Terminación exterior en chapa galvanizada de color gris.

1500 A 5000 Its Espuma de poliuretano flexible de coeficiente de conductividad térmica 0,038 W/m°K. Terminación exterior con funda skay de 0,28 mm de color rojo. A petición del cliente se pueden suministrar SIN AISLAMIENTO o con otro tipo de aislamiento y acabado exterior (funda para intemperie, chapa de aluminio, armaflex, lana de roca). Ver opciones en AISLAMIENTOS.

Los acumuladores cumplen los criterios de diseño ecológico según Reglamento 814/2013 y de etiquetado energético según Reglamento 812/2013.

1 Vaciado

2 Válvula de seguridad

3-4-5-6 Conexionado a la instalación

7-8 Instrumentación

H: Altura total

De:

Df: Diámetro acumulador sin aislamiento

Diámetro acumulador con aislamiento

CONDICIONES DE DISEÑO

Presión diseño	Temperatura diseño
6 bar	-10 / 85 C°

(2) (7) (4) (6) (7) (6)

Modelos DI con etiquetado energético

Código	Vol.neto (Its)	Pérdida ca l or (W)	Clase energética
DI010AC06RG	99	62	C
DI020AC06RG	187	84	C
DI030AC06RG	288	89	C
DI050AC06RG	496	103	C

CÓDIGOS DE PRODUCTOS

Jili aisiaillielitu						
Código	Vol. (lts)					
DI150AC06	1500					
DI200AC06	2050					
DI250AC06	2500					
DI300AC06	3000					
DJ400AC06	4000					
DI500AC06	5000					

Para capacidades inferiores a 1500 lts. no puede suministrarse sin aislamiento

DIMENSIONES

Volumen	Dimensiones (mm)							Cone	exión G hei	mbra	Peso
(litros)	Df	De	Н	H1	H2	Н3	H4	1-2	3-4-5-6	7-8	(kg)
100	400	460	1007	73	287	592	792	1"1/4	1"1/2	1/2"	32
200	450	510	1407	68	297	927	1177	1"1/4	1"1/2	1/2"	53
300	550	610	1519	129	404	994	1244	1"1/4	2"	1/2"	67
500	650	750	1790	80	400	1200	1450	1"1/4	3"	1/2"	101
750	750	850	2100	80	430	1437	1730	1"1/4	3"	1/2"	147
1000	850	950	2166	80	463	1463	1763	1"1/2	3"	1/2"	170
1500	1000	1200	2212	79	496	1596	1796	2"	3"	1/2"	202
2050	1150	1250	2274	62	518	1618	1818	2"	3"	1/2"	247
2500	1250	1350	2370	101	585	1685	1885	2"	4"	1/2"	294
3000	1250	1350	2870	101	585	2185	2385	2"	4"	1/2"	334
4000	1400	1500	2927	81	604	2204	2404	2"	4"	1/2"	516
5000	1600	1700	3014	55	634	2234	2434	2"	4"	1/2"	653

Con aislamiento estándar

Código	Vol. (lts)
DI010AC06RG	100
DI020AC06RG	200
DI030AC06RG	300
DI050AC06RG	500
DI075AC06RG	750
DI100AC06RG	1000
DI150AC06RFP	1500
DI200AC06RFP	2050
DI250AC06RFP	2500
DI300AC06RFP	3000
DI400AC06RFP	4000
DI500AC06RFP	5000

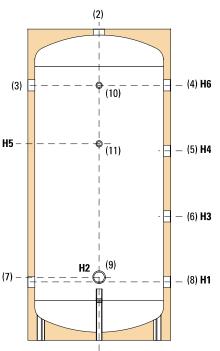
DIB / DEPÓSITO DE INERCIA 4 BAR - BOMBA DE CALOR

INFORMACIÓN TÉCNICA

Depósito de inercia para almacenamiento de agua caliente o fría procedente de la bomba de calor, con la función de limitar el número de encendidos y apagados de dicha bomba cuando se producen rápidas variaciones de temperatura.

Los depósitos de inercia están construidos en acero al carbono ST-37-2, y pintados exteriormente con imprimación antioxidante.

APLICACIÓN


Acumulación de agua fría / caliente en sistemas con bomba de calor.

AISLAMIENTO

Aislamiento de poliuretano expandido rígido de conductividad térmica 0,023 W/m°K.

Terminación exterior en funda skay de color gris.

Los acumuladores cumplen los criterios de diseño ecológico según Reglamento 814/2013 y de etiquetado energético según Reglamento 812/2013.

Modelos DIB con etiquetado energético

Código	Vol.neto (Its)	Pérdida ca l or (W)	Clase energética
DIB010AC04RG	95	62	С
DIB020AC04RG	180	83	C
DIB030AC04RG	279	89	C
DIROSOACO4RG	478	103	C

CONDICIONES DE DISEÑO

Presión	Temperatura
de diseño	de diseño
4 bar	-10 / 85 °C

2 Válvula de seguridad

3-4-5 Conexionado a la instalación

6-7-8 Conexionado a la instalación

9 Conexión para resistencia eléctrica

10-11 Instrumentación

H: Altura total

Df: Diámetro acumulador sin aislamiento

De: Diámetro acumulador con aislamiento

DIMENSIONES

Volumen	Dimensiones (mm)								
(litros)	Df	De	Н	H1	H2	Н3	H4	H5	H6
100	400	461	990	206	246	374	543	511	711
200	450	517	1289	206	246	489	793	836	1086
300	550	624	1346	256	276	536	816	846	1086
500	650	725	1641	271	291	634	998	1091	1361

Volumen		Conexiones rosca gas HEMBRA						
(l itros)	2	3-4-5	6-7-8	9	10-11	(kg)		
100	1"	1"	1"	1"1/2	1/2"	23		
200	1"	1"	1"	1"1/2	1/2"	41		
300	1"1/4	1"1/4	1"1/4	1"1/2	1/2"	51		
500	1"1/4	1"1/4	1"1/4	1"1/2	1/2"	76		

Código	Vol. (Its)
DIB010AC04RG	100
DIB020AC04RG	200
DIB030AC04RG	300
DIB050AC04RG	500

Depósito de inercia para almacenamiento de agua caliente o fría procedente de la fuente de calor, con la función de limitar el número de encendidos y apagados de dicha fuente cuando se producen rápidas variaciones de temperatura.

Los depósitos de inercia están construidos en acero al carbono ST-37-2, y pintados exteriormente con imprimación antioxidante.

APLICACIÓN

Acumulación de agua fría / caliente en sistemas con bomba de calor.

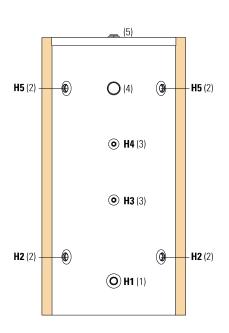
AISLAMIENTO

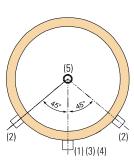
Los interacumuladores se suministran con aislamiento estándar de poliuretano expandido rígido de 50 mm de espesor.

El acabado exterior se realiza en funda de polietileno reciclable de color gris oscuro.

Los interacumuladores cumplen los criterios de diseño ecológico según Reglamento 814/2013 y de etiquetado energético según Reglamento 812/2013.

CONDICIONES DE DISEÑO


	Presión diseño	Temperatura diseño
Depósito	4 bar	95 C°


Modelos DIP con etiquetado energético

Código	Vol.neto (Its)	Pérdida ca l or (W)	Clase energética
DIP010AC04RG	100	57,4	C
DIP020AC04RG	200	70.8	(

DIMENSIONES

Vo l umen	Dimensiones (mm)							
(l itros)	Df	De	Н	H1	H2	H3	H4	H5
100	380	480	1110	165	268	473	678	883
200	480	580	1340	165	256	536	818	1098

Volumen	Con	Peso			
(litros)	1	2	3 - 4	5	(kg)
100	1"	1"	1/2"	1"1/4	31
200	1"	1"	1/2"	1"1/4	53

- l Vaciado
- 2 Conexiones a la instalación
- Conexiones para instrumentación
- 1 Termómetro
- 5 Válvula de seguridad / Purgado
- H: Altura total
- Df: Diámetro acumulador sin aislamiento
- De: Diámetro acumulador con aislamiento

c	Á	П	i	C	\cap	C	n	Е	D	D	\cap	n	П	IC.	T	\cap	C
L	U	υ	н	U	U	2	υ	Е.	М	ĸ	U	υ	u	II.	ш	U	2

Código	Vol. (Its)
DIP010AC04RG	100
DIP020AC04RG	200

DIM / DEPÓSITO DE INERCIA MURAL 4 BAR

INFORMACIÓN TÉCNICA

Depósito de inercia de capacidades 25 y 50 litros, con doble función de acumulación de energía y de separación hidráulica entre la fuente de calor y los terminales de consumo de caudal.

Los depósitos de inercia / separador hidráulico están fabricados en acero carbono y han sido diseñados para instalación mural sobre pared en posición vertical.

Se incluyen los soportes para la instalación

APLICACIÓN

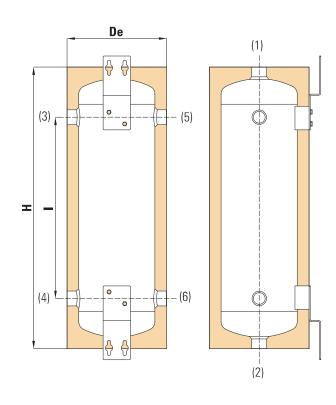
Acumulación de agua fría / caliente en circuitos de refrigeración / calefacción. Separación hidráulica entre fuente de calor y terminales de consumo

AISLAMIENTO

Los depósitos de inercia murales se suministran con aislamiento de poliuretano expandido rígido de conductividad térmica 0,023 W/m°K. Terminación exterior en funda de PVC de color gris.

Los acumuladores cumplen los criterios de diseño ecológico según Reglamento 814/2013 y de etiquetado energético según Reglamento 812/2013.

CONDICIONES DE DISEÑO


	Presión diseño	Temperatura diseño
Depósito	4 bar	-10 / 95 C°

Modelos DIM con etiquetado energético

Código	Vol.neto (Its)	Pérdida ca l or (W)	Clase energética
DIM002AC04RG	26	29	В
DIM005AC04RG	51	39	В

DIMENSIONES

Vo l umen	Dime	Peso		
(litros)	Н	De	ı	(kg)
25	790	290	520	11
50	1008	343	690	18

Volumen	MBRA		
(litros)	1	2	3 - 4 - 5 - 6
25	1"	1"	1" 1/4
50	1"	1"	1" 1/4

Válvula de seguridad

2 Desagüe

3-4-5-6 Conexionado a la

instalación

H: Altura total

De: Diámetro con aislamiento

Código	Vol. (Its)
DIM002AC04RG	25
DIM005AC04RG	50

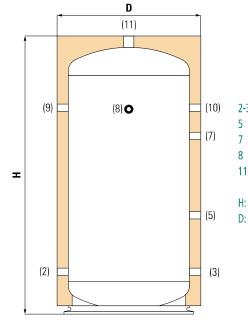
Muchas instalaciones de refrigeración o calefacción precisan de depósitos para aumentar la inercia térmica del sistema, a fin de evitar un número elevado de encedidos del grupo frigorífico o caldera cuando se producen rápidas variaciones de temperatura.

Los depósitos de inercia de la serie DIX están construidos en acero inoxidables AISI 444, y son adeucados para aplicaciones en las que el agua del circuito primario resulta muy agresiva para su empleo con acero carbon (bombas de calor, etc).

APLICACIÓN

Acumulación de agua fría / caliente en sistemas de refrigeración / calefacción.

AISLAMIENTO


Los depósitos se suministran con aislamiento estándar de poliuretano expandido rígido de alta densidad, coeficiente de conductividad térmica de 0,022 W/m°K, exento de gases perjudiciales para la capa de ozono y con espesor de 50 mm.

La terminación exterior se realiza en chapa galvanizada pintada de color blanco.

Los acumuladores cumplen los criterios de diseño ecológico según Reglamento 814/2013 y de etiquetado energético según Reglamento 812/2013.

CONDICIONES DE DISEÑO

	Presión diseño	Temperatura diseño
Depósito	6 bar	95 C°

Modelos DIX con etiquetado energético

Código	Vol.neto (Its)	Pérdida calor (W)	Clase energética
DI005X06RG	51	40	В
DI010X06RG	100	49	В
D I 020X06RG	198	77	C
D I 030X06RG	301	94	C
D l 050X06RG	496	111	C

2-3-9-10 Conexionado a la instalación

- 5 Instrumentación
- 7 Instrumentación (200-300-500 lts)
- 8 Termómetro
- 11 Válvula de seguridad / Purga
- H: Altura total
 - Diámetro con aislamiento

DIMENSIONES

Volumen	Dimensior	Peso	
(litros)	D	Н	(kg)
50	Ø 500	600	16
100	Ø 550	810	30
200	Ø 550	1420	49
300	Ø 620	1570	63
500	Ø 710	1910	93

Volumen	Conexiones rosca gas HEMBRA							
(litros)	2	3	5	7	9	10	11	
50	1"1/4	1"1/4	1/2"	_	1"1/4	1"1/4	1/2"	
100	1"1/4	1"1/4	1/2"	_	1"1/4	1"1/4	1/2"	
200	1"1/4	1"1/4	1/2"	1/2"	1"1/4	1"1/4	1/2"	
300	1"1/4	1"1/4	1/2"	1/2"	1"1/4	1"1/4	1/2"	
500	1"1/2	1"1/2	1/2"	1/2"	1"1/2	1"1/2	1/2"	

Código	Vol. (l ts)
DI005X06RG	50
DI010X06RG	100
DI020X06RG	200
DI030X06RG	300
DI050X06RG	500

El acumulador de agua refrigerada ARZ ha sido diseñado para trabajar en instalaciones de refrigeración, con objeto de aumentar la inercia térmica de las mismas. De esta forma, se evita que al trabajar con bajo contenido de agua, debido a la rápida variación de temperatura, se verifique un número elevado de encendidos del sistema, repercutiendo en un aumento de la duración del grupo frigorífico.

Los acumuladores ARZ están construidos en acero al carbono. Toda la superficie del depósito está zincada mediante la inmersión en caliente del mismo en un baño de zinc con una pureza no inferior al 98,25 % (EN 1179).

APLICACIÓN

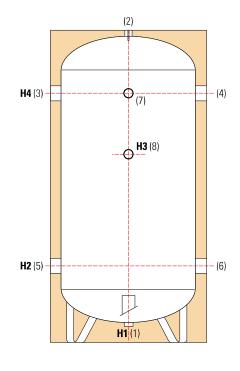
Acumulación de agua fría en instalaciones de refrigeración.

AISLAMIENTO

Se suministra el siguiente aislamiento estándar en función de la capacidad:

100 a 1.000 lts Poliuretano expandido rígido ecológico de espesor mínimo de 30 mm y conductividad térmica de 0,023 W/m°K.

Terminación exterior en chapa galvanizada de color gris.


1.500 a 5.000 lts Polietileno expandido de células abiertas anticondensación de 20 mm.

Terminación exterior en funda de skay de 0,28 mm de color azul.

CONDICIONES DE DISEÑO

Presión diseño	Temperatura diseño
6 bar	-10 / 50 C°

- 1 Vaciado
- 2 Válvula de seguridad

3-4-5-6 Conexionado a la instalación

7-8 Instrumentación

H: Altura total

Df: Diámetro acumulador sin aislamiento

De: Diámetro acumulador con aislamiento

DIMENSIONES

Volumen	Dimensiones (mm)								Peso		
(litros)	Df	De	Н	H1	H2	Н3	H4	1-2	3-4-5-6	7-8	(kg)
100	400	457	1007	73	287	592	792	1"1/4	1"1/2	1/2"	32
200	450	513	1407	68	297	927	1177	1" 1/4	1"1/2	1/2"	53
300	550	620	1519	129	404	994	1244	1"1/4	2"	1/2"	67
500	650	720	1811	121	441	1241	1491	1"1/4	3"	1/2"	101
750	750	830	2108	108	458	1458	1758	1"1/4	3"	1/2"	147
1000	850	930	2162	96	479	1479	1779	1" 1/2	3"	1/2"	170
1500	950	990	2351	121	490	1700	2000	2"	3"	1/2"	183
2000	1100	1140	2421	105	509	1719	2019	2"	3"	1/2"	219
3000	1250	1290	2804	149	619	1919	2319	2"	4"	1/2"	321
4000	1450	1490	2878	133	648	1948	2348	2"	4"	1/2"	442
5000	1600	1640	2916	111	656	1956	2356	2"	4"	1/2"	565

CÓDIGOS DE PRODUCTOS

Con aislamiento estándar

Con aisiannento estanuar						
Código	Vol. (Its)					
ARZ010GZ06RG	100					
ARZ020GZ06RG	200					
ARZ030GZ06RG	300					
ARZ050GZ06RG	500					
ARZ075GZ06RG	750					
ARZ100GZ06RG	1000					
ARZ150GZ06RAP	1500					
ARZ200GZ06RAP	2000					
ARZ300GZ06RAP	3000					
ARZ400GZ06RAP	4000					
ARZ500GZ06RAP	5000					

COMBI / TERMOACUMULADOR COMBINADO CON ACUMULACIÓN POLYWARM®

INFORMACIÓN TÉCNICA

El termoacumulador COMBI se constituye de un depósito para agua de circuito primario conectado a un circuito de calentamiento (caldera u otra fuente de calor), y de un acumulador interior para aqua caliente sanitaria (ACS) construido este último en acero carbono con revestimiento Polywarm®. En el caso de los termoacumuladores COMBI 2/COMBI 3 se dispone además de 1 ó 2 serpentines adicionales construidos en acero carbono como apoyo a la fuente de calor principal, o bien como calentamiento de fluido secundario de otro circuito anexo. Se incluye ánodo de magnesio como protección catódica.

APLICACIÓN

Producción y acumulación de aqua caliente sanitaria (ACS) y de producción de fluido de calentamiento de otros circuitos. Permite mejorar la flexibilidad de reacción de la caldera u otro sistema de calentamiento.

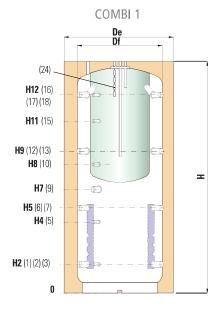
AISLAMIENTO

Se suministra el siguiente aislamiento estándar en función de la capacidad:

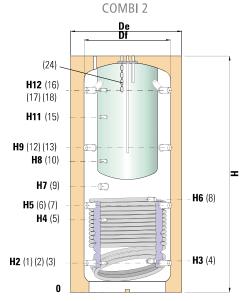
500 y 600 lts: Aislamiento de alta eficiencia fabricado con espuma rígida de poliuretano

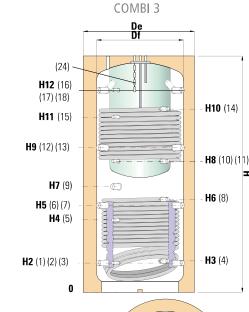
800 a 2000 lts: Aislamiento de fibra de poliéster flexible con resistencia al fuego B-s2d0

en conformidad con la norma EN 13501.


Terminación exterior con funda skay de color gris y tapa superior de PVC.

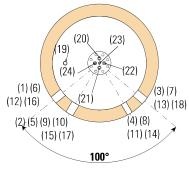
Los acumuladores cumplen los criterios de diseño ecológico según Reglamento 814/2013 y de etiquetado energético según Reglamento 812/2013.





CONDICIONES **DE DISEÑO**

	(V1) Termoacumulador	Acumulador ACS (V2)	Serpentines
Presión de diseño	3 bar	6 bar	12 bar
Temperatura de diseño	95 C°	90 C°	110 C°



- Retorno a caldera 1"1/2 Gas F 1/3
- 2 Instrumentación 1/2" Gas F
- 4 Salida serpentín inferior 1" Gas F
- 5 Instrumentación 1/2" Gas F
- 6/7 Retorno a caldera 1"1/2 Gas F
- 8 Entrada a serpentín inferior 1" Gas F
- 9 Resistencia eléctrica 1" 1/2
- 10 Instrumentación 1/2" Gas F

- Salida a serpentín superior 1" Gas F
- 12/13 Conexiones a generador apoyo 1"1/2
- 14 Entrada serpentín superior 1" Gas F
- Instrumentación 1/2" Gas F 15
- 16/18 Entrada de caldera 1"1/2 Gas F
- 17/19 Instrumentación 1/2" Gas F
- 20 Entrada agua fría 3/4" Gas F
- 21 Salida ACS 3/4" Gas F

- Recirculación 3/4" Gas F 22
- 23 Instrumentación 1/2" Gas F
- 24 Protección catódica
- H: Altura total
- De: Diámetro acumulador con aislamiento
- Df: Diámetro de acumulador sin aislamiento

DIMENSIONES

Volumen		Dimensiones (mm)												
(litros)	Df	De	Н	H2	Н3	H4	H5	H6	H7	H8	H9	H10	H11	H12
500	650	750	1670	247	260	533	629	744	841	930	1011	1231	1231	1343
600	650	750	1920	247	260	582	695	855	915	1060	1144	1500	1382	1593
800	790	1010	1890	265	278	584	690	762	823	988	1115	1428	1332	1541
1000	790	1010	2180	265	284	656	787	953	998	1188	1309	1748	1588	1831
1500	950	1210	2300	313	336	736	845	1006	1061	1286	1377	1805	1653	1909
2000	1100	1360	2370	347	370	770	879	1001	1060	1300	1411	1830	1687	1943

DATOS TÉCNICOS Y DE FUNCIONAMIENTO

Volumen (litros)	Vol. acumulación ACS (litros)	Sup. circuito sanitario (m²)	Vol. serpentín inferior (litros)	Sup. serpentín inferior (m²)	Vol. serpentín superior (litros)	Sup. serpentín superior (m²)
500	99	1,1	11,5	1,9	8	1,3
600	146	1,3	18	2,8	12	1,9
800	191	1,6	20	3,1	16	2,4
1000	226	1,8	24	3,7	20	3,1
1500	412	2,5	32	4,9	23	3,5
2000	566	3,1	35	5,4	27	4,1

Peso (kg)						
CB1	CB2	CB3				
97	116	145				
109	131	162				
133	160	195				
150	184	226				
228	267	322				
290	336	397				

Volumen (litros)	Caudal máximo ACS en continuo (lts/min)
500	2,5
600	3
800	3,5
1000	4,1
1500	5,6
2000	6,8

Caudal máximo ACS en continuo de 10 a 45°C con agua de inercia acumulada a 65°C y caldera en funcionamiento.

Modelos CB* con etiquetado energético

Código	Vol.neto	Pérdida calor	Clase
	(Its)	(W)	energética
CB*050ACPW03RG	478	109	C

CÓDIGOS DE PRODUCTOS

COMBI 1 - ACUMULADOR

Código	Capacidad (l ts)
CB1050ACPW03RG	500
CB1060ACPW03RG	600
CB1080ACPW03RFP	800
CB1100ACPW03RFP	1000
CB1150ACPW03RFP	1500
CB1200ACPW03RFP	2000

COMBI 2 - ACUMULADOR + 1 SERPENTÍN

٠.		
	Código	Capacidad (lts)
	CB2050ACPW03RG	500
	CB2060ACPW03RG	600
	CB2080ACPW03RFP	800
	CB2100ACPW03RFP	1000
	CB2150ACPW03RFP	1500
	CB2200ACPW03RFP	2000

COMBI 3 - ACUMULADOR + 2 SERPENTINES

Código C	Capacidad (lts)
CB3050ACPW03RG	500
CB3060ACPW03RG	600
CB3080ACPW03RFP	800
CB3100ACPW03RFP	1000
CB3150ACPW03RFP	1500
CB3200ACPW03RFP	2000

- A Entrada de agua fría
- B Consumo de agua caliente sanitaria
- C Calefacción
- 1 Tanque buffer
 - V1 Agua caliente primario
 - V2 Agua caliente sanitaria
- 2 Caldera de gas/gasoil
- 3 Caldera de biomasa
- 4 Vaso expansión abierto
- 5 Bomba circulación
- 6 Grupo seguridad hidráulico
- 7 Paneles solares
- 8 Bomba circulación solar

Ejemplo de instalación de COMBI 3 en la que se compatibilizan varias fuentes de producción de calor (caldera de biomasa, paneles solares y caldera de gasgasoil) para producción de agua caliente sanitaria y agua de calefacción.

ECO-COMBI 1/2/3 / TERMOACUMULADOR CON PRODUCCION ACS POR SERPENTÍN CORRUGADO

INFORMACIÓN TÉCNICA

El termoacumulador ECO-COMBI se constituye de un depósito para agua de circuito primario conectado a un circuito de calentamiento (caldera u otra fuente de calor), y de un serpentín corrugado de acero inoxidable AISI 316 L para la producción instantánea de agua caliente sanitaria. En el caso de los modelos ECO-COMBI 2 / ECO-COMBI 3 se dispone además de 1 ó 2 serpentines adicionales construidos en acero carbono como apoyo a la fuente de calor principal, o bien como calentamiento de fluido secundario de otro circuito anexo.

APLICACIÓN

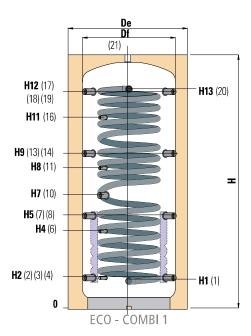
Producción instantánea de agua caliente sanitaria (ACS) y de producción de fluido de calentamiento de otros circuitos. Permite mejorar la flexibilidad de reacción de la caldera u otro sistema de calentamiento.

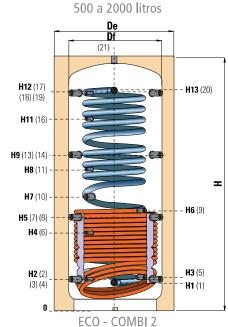
AISLAMIENTO

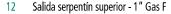
Se suministra el siguiente aislamiento estándar en función de la capacidad:

500 y 600 lts: Aislamiento de alta eficiencia fabricado con espuma rígida de poliuretano 800 a 2000 lts: Aislamiento de fibra de poliéster flexible con resistencia al fuego B-s2d0 en conformidad con la norma EN 13501.

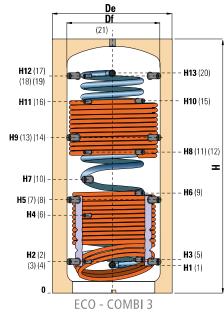
Terminación exterior con funda skay de color gris y tapa superior de PVC.

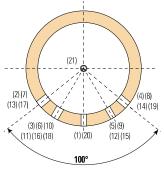

Los acumuladores cumplen los criterios de diseño ecológico según Reglamento 814/2013 y de etiquetado energético según Reglamento 812/2013.

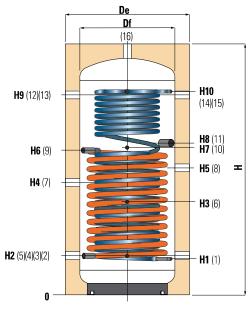

A B C C D E F


CONDICIONES DE DISEÑO

	Depósito	Serpentín corrugado ACS	Serpentín fijo
Presión de diseño	3 bar	6 bar	12 bar
Temperatura de diseño	99 C°	110 C°	110 C°




- 1 Entrada a serpentín corrugado de ACS 1" Gas M
- 2/4 Retorno a generador de calor 1" 1/2 Gas F
- 3 Instrumentación 1/2" Gas F
- 5 Salida serpentín inferior 1" Gas F
- 6 Instrumentación 1/2" Gas F
- 7/8 Retorno a generador de calor 1" 1/2 Gas F
- 9 Entrada serpentín inferior 1" Gas F
- 10 Resistencia eléctrica 1" 1/2 Gas F
- 11 Instrumentación 1/2" Gas F



- 13/14 Retorno a generador de calor 1" 1/2 Gas F Salida a circuito de calefacción
- 15 Entrada serpentín superior 1" Gas F
- 16 Instrumentación 1/2" Gas F
- 17/19 Entrada desde generador de calor 1" 1/2 Gas F
- 21 Entrada desde generador de calor 1" 1/2 Gas F
- 18 Instrumentación 1/2" Gas F
- 20 Salida de serpentín corrugado de ACS 1" Gas M

(5)(7)(12) (16) (2)(8)(13) (1)(11)(15)

(3)(6)(10)(14)

- 200 300 litros
- 1 Entrada a serpentín corrugado de ACS 1/2" Gas F
- 2/5 Retorno de circuito de calefacción 1"1/2 Gas F
- 4 Entrada a serpentín desde colector solar 1" Gas F
- 3/6 Instrumentación 1/2" Gas F
- 7 Retorno de circuito de calefacción 1"1/2 Gas F
- 8 Entrada desde caldera auxiliar 1"1/2 Gas F
- 9 Salida de serpentín hacia colector solar 1" Gas F
- 10/14 Instrumentación 1/2" Gas F
- 11 Conexión para resistencia eléctrica 1"1/2 Gas F
- 12 Salida a circuito de calefacción 1"1/2 Gas F
- 13 Retorno a caldera auxiliar 1"1/2 Gas F
- 15 Salida de serpentín corrugado de ACS 1/2 Gas F
- 16 Salida a calefacción 1"1/2 Gas F

DIMENSIONES

Volumen							D	imensio	nes (mr	n)						
(litros)	Df	De	Н	H1	H2	Н3	H4	H5	Н6	H7	H8	Н9	H10	H11	H12	H13
200	450	590	1309	227	252	552	602	702	822	852	822	1052	1079	_	_	_
300	550	690	1357	257	272	572	622	722	812	872	812	1072	1084	_	_	_
500	650	750	1620	230	247	260	533	629	744	841	930	1011	1231	1231	1343	1360
600	650	750	1870	230	247	260	582	695	855	915	1060	1144	1361	1382	1593	1610
800	790	1010	1840	248	265	278	584	690	762	823	988	1115	1332	1332	1541	1558
1000	790	1010	2130	248	265	284	656	787	953	998	1188	1309	1661	1588	1831	1843
1500	950	1210	2250	296	313	336	736	845	1006	1061	1286	1377	1673	1653	1909	1921
2000	1100	1360	2320	330	347	370	770	879	1001	1060	1300	1411	1687	1687	1943	1955

DATOS TÉCNICOS Y DE FUNCIONAMIENTO

Volumen	Serpentín c	orrugado	Serpentines fijos					
(litros)	Vol. acumulación ACS (litros)		Vol. serpentín superior (litros)	Sup. serpentín superior (m²)	Vol. serpentín inferior (litros)	Sup. serpentín inferior (m²)		
200	2,9	1,4	_	_	6	1,0		
300	5,1	2,5	_	_	7,3	1,2		
500	26,6	4,5	8	1,3	11,5	1,9		
600	31	5,3	8	1,3	13	2,1		
800	33,4	5,8	11,8	1,8	16,3	2,5		
1000	45,5	7,8	16,3	2,5	20,7	3,1		
1500	55,3	9,5	16,8	2,8	25,3	3,8		
2000	72,2	12,3	19,1	2,8	29,6	4,6		

Peso (kg)						
EC1	EC2	EC3				
44	53	_				
60	74	_				
85	106	116				
95	118	132				
116	142	165				
167	202	231				
235	278	307				
343	394	427				

Volumen (litros)	Caudal máximo ACS en continuo (lts/min)
200	11
300	23
500	29
600	34
800	37
1000	50
1500	57
2000	74

Caudal máximo ACS en continuo de 10 a 45°C con agua de inercia acumulada a 65°C y caldera en funcionamiento.

Modelos EC* con etiquetado energético

Código	Vol.neto (Its)	Pérdida calor (W)	Clase energética
EC*020AC6L03RG	180	59	В
EC*030AC6L03RG	279	55	В
EC*050AC6L03RG	478	109	C

CÓDIGOS DE PRODUCTOS

ECO-COMBI 1: SERPENTÍN CORRUGADO

Código	Capacidad (Its)
EC1020AC6L03RG	200
EC1030AC6L03RG	300
EC1050AC6L03RG	500
EC1060AC6L03RG	600
EC1080AC6L03RFP	800
EC1100AC6L03RFP	1000
EC1150AC6L03RFP	1500
EC1200AC6L03RFP	2000

ECO-COMBI 2: SERPENTÍN CORRUGADO + SERPENTÍN

Código	Capacidad (Its)
EC2020AC6L03RG	200
EC2030AC6L03RG	300
EC2050AC6L03RG	500
EC2060AC6L03RG	600
EC2080AC6L03RFP	800
EC2100AC6L03RFP	1000
EC2150AC6L03RFP	1500
EC2200AC6L03RFP	2000

ECO-COMBI 3: SERPENTÍN CORRUGADO + 2 SERPENTINES

Código	Capacidad (Its)
EC3050AC6L03RG	500
EC3060AC6L03RG	600
EC3080AC6L03RFP	800
EC3100AC6L03RFP	1000
EC3150AC6L03RFP	1500
EC3200AC6L03RFP	2000